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Partitioning the phase space in a natural way for scattering systems
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In this paper, we demonstrate a recent procedure for the construction of a symbolic dynamics for open
systems by applying it to a model potential, the driven inverted Gaussian, which has proven very useful in
describing laser-atom interaction. The symbolic dynamics and the corresponding partition of the Poincaré map
are natural from the point of view of an asymptotic observer since the resulting branching tree coincides with
the one extracted from the scattering functions. In general, the whole procedure is approximate because it only
describes the globally unstable part of the chaotic invariant set, that is, the part that can be seen by an
asymptotic observer in scattering data. It ignores Kolmogorov-Arnold-Moser islands and their fractal

surroundings.
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I. INTRODUCTION

Finding a symbolic dynamics is the most global way of
describing a chaotic system. The symbolic dynamics corre-
sponds to a partitioning of the phase space in cells. With a
symbolic dynamics, every trajectory can be labeled by a
symbol sequence that corresponds to the sequence of the
partition cells visited by this trajectory. We consider systems
that can be cast into some iterated map on a two-dimensional
domain. In this map, the chaotic set is represented by a ver-
sion of Smale’s horseshoe [1], which in most cases is an
incomplete one. Developing a symbolic dynamics for these
systems is equivalent to partitioning the fundamental area R
of the horseshoe, that is, the area that covers the chaotic set.

For incomplete horseshoes, pruning [2] sets in and the
construction of a symbolic dynamics becomes a difficult
task. In previous studies [3], a symbolic dynamics has been
developed that partitions the phase space using lines of maxi-
mal folding of the horseshoe as division lines of the partition
cells. An improved version [4] of the originally developed
symbolic dynamics uses, in addition, symmetry lines as di-
vision lines to handle Kolmogorov-Arnold-Moser (KAM) is-
lands. If one is only interested in finding measures of chaos,
then the previously developed symbolic dynamics, with the
use of the thermodynamic formalism [5], allows one to do
so. However, if one is interested in describing scattering sys-
tems and, thus, in obtaining all information relevant to scat-
tering trajectories, then it is also important to partition the
phase space in a “natural” way from the scattering perspec-
tive. Specifically, the scattering functions of chaotic systems
have a pattern of singularities and intervals of continuity.
When we refer to a natural way of partitioning the phase
space, we mean that the partition has to be such that all
scattering trajectories that have initial conditions in the same
interval of continuity of the scattering function are labeled by
the same symbol sequence. More specifically, the hierarchi-
cal structure of these intervals of continuity can be cast in the
form of a branching tree. The structure of this branching tree
is completely determined by the intersection pattern between
the stable manifolds and the local segment of the unstable
manifold of the outer fixed points of the Poincaré map. Itera-
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tion step after iteration step of the map, new gaps are cut out
of this local segment of the unstable manifold and these gaps
correspond one to one to the intervals of continuity of the
scattering functions. It is clear that if scattering trajectories in
the same interval of continuity are to be labeled by the same
symbol sequence, then the division lines of the partition cells
must be related to the manifolds of the outermost fixed
points.

We have already developed a general algorithm for parti-
tioning the Poincaré map that is natural (in the sense men-
tioned above) for scattering systems that can be cast in a
two-dimensional Poincaré map. Our method is described in
technical detail in Ref. [6]. However, we point out, that un-
like the previously developed symbolic dynamics, our parti-
tion does not account for KAM islands. As with any
scattering-based treatment of a system, our symbolic dynam-
ics can only take into account the part of the system that is
accessible to the outside world and can be seen by an
asymptotic observer. Therefore, our partition takes into ac-
count only the outer unstable part of the horseshoe and com-
pletely ignores the KAM islands. Consequently, near the
fractal surface of a KAM island and its surrounding second-
ary structures, our partition is approximate.

In the current work, we first explain and motivate the two
principles on which our partition is based. We discuss how
the first principle assures that scattering trajectories from the
same interval of continuity are described by the same symbol
sequence. We also explain how the second one results in a
symbolic dynamic with grammatical rules of length one, that
is, the simplest symbolic dynamic. In addition, we explain, in
detail, how one extracts from our partition all the relevant
scattering information. That is, we discuss how the chaotic
saddle (chaotic set) “transfers” the scattering trajectories
with initial conditions in a given interval of continuity
through the interaction region to the asymptotic one. Specifi-
cally, we show how one can find, using our partition, the
number of times a trajectory steps inside the fundamental
area R of the Poincaré map, the sequence of partition cells
the trajectory steps in, inside the area R, and whether the
trajectory reflects or transmits. We illustrate how to extract
all the scattering information from our partition in the con-
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text of a one-dimensional inverted Gaussian potential driven
by a laser field. This model potential has been successfully
used in previous studies to explain a variety of aspects of the
laser-atom interactions [7].

Our general scheme of partitioning the phase space and
obtaining the relevant scattering information is based on the
intersection pattern of stable and unstable manifolds. We be-
lieve that this general scheme will facilitate the understand-
ing of the mechanisms governing chaotic transport in a vari-
ety of systems. The way a description of scattering functions
in terms of the intersection pattern of the stable and unstable
manifolds of the relevant fixed points leads to an understand-
ing of the transport through the chaotic saddle is nicely illus-
trated in a recent classical study of the hydrogen atom in
parallel electric and magnetic fields excited by a short laser
pulse [8].

II. MODEL

We illustrate the principles of our partition using a one-
dimensional inverted Gaussian atomic potential in the pres-
ence of a strong time-periodic electric field. The electric field
E(t)=Eysin(wt) (T=2m/w is the period of the field) is treated
within the dipole approximation as a monochromatic infinite
plane wave linearly polarized along the direction of the inci-
dent electron. This potential has offered considerable insight
into the laser-atom interactions [7]. The Hamiltonian in the
Kramers-Henneberger reference frame (the frame that oscil-
lates with a free electron in the time-periodic field) [9] is

2
H(x,1)= % — Vpe (b + at0Va?, (1)

where ()= apsin(wt) is the classical displacement of a free
electron from its center of oscillation in the time-periodic
electric field E(t) with ay=—gE,/ w” (q is the particle charge
which for the electron is g=-1 a.u.). We use atomic units
throughout the paper if not otherwise stated. Next, we trans-
form Eq. (1) to a two-degree-of-freedom time-independent
system, where the total energy E of the system is conserved,
as follows:

2
H= % — Voellr+ aosin( @V 4 yr. (2)

I and ¢ are, respectively, the action-angle variables of the
driving field. Using Eq. (2), we find from Hamilton’s equa-
tions of motion that ¢=wt. In the Secs. IT A and II B all our
calculations are performed with the values V,
=0.270 35 a.u. and 6=2 a.u. assigned to the parameters of
the inverted Gaussian potential. The frequency of the time-
periodic field w and the amplitude of the field « are taken
constant and equal to 0.65 a.u. and 0. 9 a.u., respectively
[10].

A. Chaotic invariant set

The chaotic invariant set is usually represented by a
horseshoe construction in an appropriate Poincaré surface of
section. In the case of the well-known Smale horseshoe, the
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FIG. 1. The fundamental region R is formed by the unstable
manifold of the fixed point A, segment AE, by the stable manifold
of the fixed point C, segment CE, by the unstable manifold of the
fixed point C, segment CD, and the stable manifold of the fixed
point A, segment AD.

construction is done by stretching a fundamental region R
and folding it onto the original region [1,12]. The boundaries
of R are given by segments of the invariant manifolds of the
outer fixed points of the system. The system under consider-
ation has three period-1 orbits (fixed points). The inner fixed
point is an elliptic one. The two outer fixed points are located
at x— = [10]. As x— +0, the invariant stable and unstable
manifolds of the outer fixed point C (see Fig. 1), converge to
the same manifold (eigenvector), with p=0, where p is the
momentum. The same is true for the manifolds of the fixed
point A at x— —o0. Thus, in a small neighborhood around
them, the outer fixed points behave as parabolic ones. That
is, the tangent map at x— = has a degenerate eigenvalue
equal to 1 (one eigenvector) [11]. However, globally, the
outer fixed points behave as unstable ones; that is, they pro-
duce invariant manifolds of the same topology as that pro-
duced by hyperbolic fixed points. The two fixed points at x
— =+ have invariant manifolds that go into the interior re-
gion and trace out the horseshoe that is under investigation.
The horseshoes shown in this paper are traced by the fixed
points at x — =0, as explained below. For this driven system,
the Poincaré map is a stroboscopic plot. That is, we plot x
and p every complete period of the field, solving Hamilton’s

equations of motion. The static Gaussian potential eI i
symmetric under the reflection x — —x, but this symmetry is
destroyed by the interaction with the laser field, which is
accounted for by including the a(r)/ 8 term as ¢~ {r+a(l/ o,
However, the potential remains invariant under the simulta-
neous operation x — —x and f— —¢. In addition, the complete
Hamiltonian has the symmetry p— —p. We need to consider
how all of the above-mentioned symmetry properties mani-
fest themselves in the Poincaré map, which in our case is a
stroboscopic map, when using the Hamiltonian in the version
given in Eq. (1). The appearance of the above-mentioned
symmetries depends on our particular choice either of the
constant 7 in the intersection condition #,=7+n7, when using
Eq. (1) to construct the Poincaré map, or the corresponding
value of @ in the intersection condition ¢p=® mod 27, when
using Eq. (2) to construct the Poincaré map. For time-
independent systems, the transformation p — —p usually cor-
responds to the time-reversal symmetry and amounts to in-
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terchanging the stable with the unstable manifolds in the map
and vice versa. This property is also valid in our case for the
particular choice ®==+7/2. However, for this choice of the
Poincaré surface of section, there is no reflection symmetry,
x——x, in the map. On the other hand, for the choice ®=0
the left-right symmetry is conserved, but then the time-
reversal symmetry is not simply expressed as the p——p
reflection. For the system under consideration, the invariant
set of the system is described by a ternary (three fixed points)
asymmetric horseshoe construction. That is, the underlying
structure of the scattering functions for electrons incident
from the right and/or left is described by two different views
right and/or left of the same horseshoe construction. The
reason we consider the invariant manifolds of the outer fixed
points is that these are the manifolds that are “seen” by the
scattering trajectories and, thus, have an effect on the scat-
tering functions, see Fig. 4 in Ref. [10]. In the following, we
choose @=77/2 in order to get the stable manifolds simply as
the mirror images of the unstable manifolds under the p —
—p reflection. It is important to realize that the symmetries of
the system do not depend at all on the particular choice of
the Poincaré surface of section. What the particular choice of
the surface of section does is to determine the way the real
symmetries of the system appear in the Poincaré map.

Let us now obtain the right view of the hierarchical struc-
ture of the horseshoe construction that underlies scattering
for electrons incident from the right. The fundamental area
R, see Fig. 1, is defined by the zero-order tendrils as well as
an infinite number of preimages (images) of the unstable
(stable) invariant manifolds, respectively. We now add one
iteration step of the stable manifolds. That is, using Hamil-
ton’s equations of motion for the Hamiltonian given in Eq.
(2), we propagate the points on the segments of the stable
manifolds, AD and EC in Fig. 1, backwards in time for one
period of the driving field. (To obtain the tendrils of the
unstable manifolds we propagate forward in time.) The inter-
section of the first image, first-order tendrils, of the stable
manifolds with the unstable manifold of the fixed point C,
segment CD in Fig. 1, reveals the first-order gap G, see Fig.
2. The intersection with the unstable manifold of one more
iteration step of the stable manifolds reveals the second order
gaps G, see Fig. 2. Thus, the gap G} is the area enclosed by
the nth-order tendril of the stable manifold and the boundary
of the fundamental area R. A point that lies in G’ is mapped
out of the fundamental region after n applications of the
map; it is, thus, of hierarchy level n. These gaps play an
important role because they are areas that are not needed to
cover the invariant set. No higher-level tendrils of the invari-
ant manifolds will ever enter such gaps. Thus, with each
iteration step, one further tendril of the stable manifolds is
added and one further level of hierarchy of these gaps is
displayed [13]. We therefore see the construction scheme of
the horseshoe by going from one level of hierarchy to the
next. We note that the term “gaps” corresponds to what is
known as lobes in fluid-transport problems [14]. In particu-
lar, the gaps correspond to those lobes that are inside the area
R. In a similar way, we construct the left view of the hierar-
chical structure of the horseshoe construction that underlies
scattering for electrons incident from the left, see Fig. 2. The
intersection points of the stable manifolds with the unstable
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FIG. 2. Horseshoe construction up to hierarchy level two on the
Poincaré surface of section ®=1r/2. The solid lines indicate tendrils
of order zero, the dashed lines indicate tendrils of order one, and the
dotted lines indicate tendrils of order two. The gaps G) on the
bottom right and top left are formed by intersections of the stable
manifolds of fixed points A and C with the local segment of the
unstable manifold of fixed point C/A, that is, CD/AE. These inter-
sections describe the right view and left view of the horseshoe
construction. tll"A indicates the first-order inner tendril of the un-
stable manifold of the fixed point A. 7 indicates the first-order
inner tendril of the unstable manifold of the fixed point C.

manifolds of the outer fixed points, seen in Fig. 2 are the
so-called homoclinic and heteroclinic points for intersecting
manifolds corresponding to the same (homoclinic) or differ-
ent (heteroclinic) fixed points. These homoclinic and hetero-
clinic intersections underlie the classical chaotic scattering.

B. Scattering functions and branching trees

Thus far, we have described the topology and hierarchical
structure of the chaotic invariant set. Since, our partition is a
natural one for scattering trajectories, the question arises as
to how the hierarchical structure of the chaotic set is related
to the hierarchical structure of the scattering functions. First,
we note that the scattering functions give properties of the
final electron asymptotes as a function of the incoming elec-
tron asymptotes. In the case of classical chaotic scattering,
the scattering functions have a fractal set of singularities.
This fractal set of singularities is the result of the intersection
of the incoming electron asymptotes with the stable mani-
folds of the underlying chaotic invariant set. That is, when
the scattering electron trajectory starts exactly on the stable
manifold of the chaotic invariant set, it stays on the chaotic
set forever, resulting in a singularity of the scattering func-
tion. Furthermore, the structure of the set of singularities is
the same as the structure of the chaotic invariant set [13].
Thus, the reason we present the hierarchical structure of the
chaotic set is that it is exactly the same as that of the scat-
tering functions [10]. An example of a scattering function is
the time delay of the incident electron as a function of the
initial momentum [10], see Fig. 3. The incident electron de-
lays, in the case of the driven Gaussian, due to the interplay
of the inverted Gaussian potential with the driving field.

The hierarchical structure of the scattering functions can
be expressed in the form of a branching tree. Let us first
explain how to obtain a branching tree [13], which describes
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FIG. 3. Time-delay function as a function of the initial momen-
tum for a set of initial conditions. The initial conditions are a line on
the Poincaré surface of section that intersects the stable manifold of
fixed point A in the right asymptotic region. This line of initial
conditions is defined by ®(,_q)=7/2, and the edge points (xy,p;)
=(10.5,-0.2025) and (x,,p,)=(10.823,-0.1829).

the right view of the horseshoe construction for scattering
from the right. We will use information developed in Sec.
IT A. (Describing how to obtain a branching tree has already
been explained in Ref. [10], but we include it in the current
paper for clarity purposes.) First, let us consider the interval
1(1), which corresponds to the local segment of the unstable
manifold CD of the fixed point C, see Fig. 4. This is the first
step in the construction of the branching tree and corre-
sponds to hierarchy level n=0. In the second step, hierarchy
level n=1, the first-order tendril of the stable manifold of the
fixed point A cuts the interval (sy,s;) out of I9 and leaves two
intervals I} (the segment of CD from D to s3) and Ié (the
segment of CD from s, to C). In the third step, hierarchy
level n=2, the second-order tendril of the stable manifold of
the fixed point A cuts the interval (s,,ss) out of /5 and leaves
two intervals, I3, (the segment of CD from s, to s4) and I,
(the segment of CD from s5 to C). In the same step (the same
iteration), the second-order tendril of the stable manifold of

X (a.u.)

FIG. 4. Construction of the branching tree for scattering from
the right. The first-order gap G reduces the initial interval I(l), at
hierarchy level n=0, down to the two intervals /] and 3. Note that
for the scattering functions, we obtain exactly the same branching
tree as for the chaotic invariant set. For the scattering functions,
instead of the gaps it is the intervals of continuity that are cut out
from the original interval in a Cantor-set structure.
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FIG. 5. Branching tree and its encoding for scattering trajecto-
ries coming in from the right.

the fixed point C cuts the interval (s,,s3) out of I} and leaves
two intervals, I, (the segment of CD from D to s,) and I3,
(the segment of CD from s5 to sq). Continuing this process,
we obtain the branching tree shown in Fig. 5, that is, we
obtain the topology of the branching tree. The way we obtain
the symbol sequences in Figs. 5 and 6 will be explained later.
In a similar way, we construct the branching tree that de-
scribes the left view of the horseshoe construction for scat-
tering from the left, see Fig. 6. The hierarchical structure of
these branching trees is the same as the hierarchical structure
of the chaotic invariant set.

Thus far, we have shown how the branching trees, which
describe the hierarchical structure of the scattering functions,
are completely determined by the topology of the chaotic
invariant set. If one is only interested in obtaining measures
of chaos, then it is not difficult to develop a set of grammati-
cal rules that describe the branching trees in Figs. 5 and 6.
There is actually an infinite number of “encodings” one can
develop to encode the trees. However, the important question
is whether or not there is a symbolic encoding of the branch-
ing trees that is natural from the scattering perspective. That
means that we are actually interested in developing a scheme
of partitioning the area R in cells so that the encoding of our
trees describes how each scattering trajectory visits the par-
tition cells in the interaction region. Developing such a par-
tition scheme is a nontrivial task. We have already developed
such a general partition scheme valid for all two-degree-of-
freedom systems in the form of an algorithm, as described in
technical detail in Ref. [6]. In the current work, we first
explain and motivate the two principles of our partition. We

C % + AA&CC&A A&CC&AA+ %C E C%+A A+%DCCh%CC&A

i

A

FIG. 6. Branching tree and its symbolic encoding for scattering
trajectories coming in from the left. We also draw the gaps 1, 2, 2,
3, 37,3", and 3" of the chaotic saddle, which correspond to the
intervals of continuity labeled by A[&,C], AC [%,C], A&[C,%],
ACC[%,C], AC%[A,+], A&%|+,A] and A&C[C,%], respectively,
to better clarify the discussion in the fourth section of Fig. 11. These
intervals of continuity correspond to those parts of the segment E in
Fig. 11 that are labeled as 1, 2, 2’, 3, 3",3", and 3"
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FIG. 7. (Color online) The preimage of the arc A can have either
one of the qualitative structures shown as segments B and C in (b).
The (n+1)th preimage of the arc A is the segment of the unstable
manifold of the fixed point O contained between the black lines in
(a). The (n+1)th preimage of the segment of the stable manifold
contained in between the black lines in (c) is the stable gap in (a).

then show why this partition is a natural one for scattering
systems. That is, we show that for each scattering trajectory
in the same interval of continuity our partition gives the fol-
lowing information: (i) the number of times the trajectory
steps inside the fundamental region before it is reflected or
transmitted, (i) the sequence of partition cells each scatter-
ing trajectory steps in, in the area R, and (iii) whether the
trajectory reflects or transmits.

III. PRINCIPLES OF THE PARTITION

We first explain, in detail, the basic principles of our
method for partitioning the phase space, a method that is
applicable to any incomplete horseshoe on a Poincaré map
defined on a two-dimensional domain. Our goal is to de-
scribe the behavior of scattering trajectories. To do so, the
symbolic dynamics one obtains as a result of our method of
partitioning the phase space must encode the branching trees.
In addition, our partitioning must be such that trajectories
from different intervals of continuity are described by differ-
ent symbol sequences while trajectories from the same inter-
val are described by the same symbol sequence. A natural
requirement our partition must satisfy is that the symbol se-
quence labeling the trajectories in an interval of continuity
must have length equal to the hierarchical level of the inter-
val. As we explain later, this implies that trajectories from a
certain interval of continuity step inside the fundamental area
R as many times as the hierarchical level of the interval of
continuity —1.

The above-described requirements are satisfied by parti-
tioning the phase space according to the following two prin-
ciples:

Principle 1. If an arc of the unstable manifold (which is
the boundary of a gap) exits R and reenters R, then the two
partition cells that this arc connects must be different; that is,
they must belong to different symbol values, provided that
the preimage of the segment that exits R has been completely
inside R.

We illustrate principle 1 using Fig. 7. Principle 1 states
that if a gap of the unstable manifold cuts the area R com-
pletely, as shown in Fig. 7(c) and the segment of the unstable
manifold that is outside R [labeled as arc A in Fig. 7(c)] has

PHYSICAL REVIEW E 73, 016219 (2006)

a preimage inside R, then a different partition cell is intro-
duced on either side of the unstable gap in Fig. 7(c). The
preimage of the arc A can have either one of the two quali-
tative structures shown as segments B and C in Fig. 7(b).
Using Fig. 7(a), we now explain how the above division line,
which introduces different cells on either side of the unstable
gap, guarantees that trajectories in different intervals of con-
tinuity are labeled by different symbol sequences. First, it is
important to realize that the branching tree of the hierarchical
structure of the scattering trajectories depicts the way the
stable manifolds of the outer fixed points intersect the local
segment of the unstable manifold of the outer fixed point that
lies on the same side as the one from which the scattering
trajectories start. Let us consider trajectories initiated on the
right asymptotic side, then the relevant local unstable mani-
fold is that of the fixed point O in Fig. 7(a). The (n+1)th
preimage of the unstable gap in Fig. 7(c) is the segment of
the local unstable manifold in Fig. 7(a) that is bounded by
the black lines. The segment of the stable manifold inter-
sected by the unstable gap in Fig. 7(c) and bounded by the
black lines has as (n+ 1)th preimage the stable gap indicated
in Fig. 7(a). Note, the reciprocal behavior of the segments of
the stable and unstable manifolds in Figs. 7(a) and 7(c). That
is, the segment of the stable manifold bounded by the black
lines in Fig. 7(c) has a (n+1)th preimage, which is a stable
gap as shown in Fig. 7(a). At the same time, the unstable gap
in Fig. 7(c) has a (n+ 1)th preimage, which is the segment of
the unstable manifold bounded by the black lines in Fig.
7(a). The intersection of the local unstable segment by the
stable gap in Fig. 7(a) corresponds to the part of the branch-
ing tree shown in Fig. 7(a). As we go from level n to n+1 in
the branching tree, two different symbol values have to be
introduced for the two segments of the unstable manifold
that remain after it is intersected by the stable gap. Introduc-
ing a division line inside the gap, and, thus, different parti-
tion cells on either side of the unstable gap in Fig. 7(c),
guarantees that at level n+1 two different symbol values are
used to describe the two branches of the tree in Fig. 7(a).
These two branches of the tree correspond to two different
parts that are unresolved at level n+1. Thus introducing a
division line guarantees that trajectories that are in different
intervals of continuity are labeled by different symbol se-
quences.

Principle 2. A division line is introduced between two
areas inside of R, where the arcs of unstable gaps have quali-
tatively different behavior. Specifically, consider first the fol-
lowing scenario: R has two stable sides and there are seg-
ments of unstable gaps in R that connect one of these stable
sides with the other one. In addition, there are segments of
unstable manifolds that start on one of these sides and return
to the same side. It can be the case that these latter arcs wind
around some incomplete unstable gap of a lower level or that
the arc itself is such an incomplete gap, such as segment C in
Fig. 7(b). These two different types of behavior must be
separated by introducing a division line as their boundary. A
second scenario of areas having qualitative different behav-
ior is when some arcs wind around a gap that does not cut
through R completely, and at the same time, there are other
arcs winding around a different gap that also do not cut
through R completely. These two qualitatively different areas
must also be separated by a division line.
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e 3/4/

FIG. 8. (Color online) In this figure, we assume that C is the
image of B and the second image of A. The division line 4 is
introduced according to principle 1. Division lines 1, 2, and 3 are
introduced according to principle 2.

Principle 2 guarantees that we obtain the simplest gram-
matical rules, that is, rules of length one. According to the
first scenario of principle 2, we must introduce division lines
3 and 1 in Fig. 8, while according to the second scenario of
principle 2 the division line 2 is introduced. Division line 4 is
introduced according to principle 1. Similarly, as in the case
of principle 1, the intersection of the unstable arc C with the
stable manifold in Fig. 8, will have a, let us say, mth preim-
age similar to the one shown in Fig. 7(a). Similarly, the in-
tersection of the unstable arc B with the stable manifold has
a (m—1)th preimage similar to the one in Fig. 7(a), while the
intersection of the unstable arc A with the stable manifold
has a (m—2)th preimage similar to the one in Fig. 7(a). Each
one of these preimages corresponds to a part of the branching
tree as that shown in Fig. 7(a). Division lines 2 and 3 are not
necessary because the above-mentioned preimages are of dif-
ferent hierarchical levels, and thus, the scattering trajectories
inside the corresponding intervals of continuity have been
separated at different hierarchical levels. Consequently, in-
stead of introducing the three cells b,c, and d in Fig. 8, we
could only introduce one, let us call it a’. However, in the
case that no division lines are introduced, every trajectory
that steps inside the cell @’ does so more than once before
exiting. This is equivalent to introducing grammatical rules
of length larger than 1. Introducing the division lines 2 and 3,
we introduce additional cells but always have grammatical
rules of length 1.

Based on these two principles, we have developed an al-
gorithm for partitioning the phase space, which is described
in technical detail in Ref. [6]. In Sec. V, we explain how this
partition completely describes the path of each scattering tra-
jectory.

IV. PARTITION OF THE DRIVEN-INVERTED GAUSSIAN

Following the basic two principles described above, one
can show that the phase space of the driven inverted Gauss-
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FIG. 9. The (1, 1/3) development stage of the asymmetric ter-
nary horseshoe is partitioned into five cells: A,+, %, &, C. For
more details, see Ref. [6].

ian is partitioned in five different cells [6]. We denote those
five cells by the symbol values A,+, %, &, and C as shown
in Fig. 9. As explained in Ref. [6], the cells A and C are
defined on a finite hierarchical level, while the cells +, %,
and & are defined on an infinite hierarchical level, see Figs.
9 and 10. The division lines for the system under consider-
ation are shown in Figs. 9 and 10. Note that this partition of
the phase space is general for all two-degree-of-freedom sys-
tems that are described by ternary horseshoes with develop-
ment parameters (1, 1/3) [6,10]. We note that the so-called
development parameter gives, approximately, the develop-
ment stage of the horseshoe construction. The significance of
this parameter is that it describes universal aspects of the
horseshoe and ignores the details. That is, it determines the
hyperbolic component of the invariant set, which is the im-
portant part for the scattering behavior, and neglects nonhy-
perbolic effects that are due to the Kolmogorov-Arnold-
Moser (KAM) tori [13,15,16]. The nonhyperbolic effects
appear at high levels of the hierarchy as tangencies, non-
transversal intersections, between stable and unstable mani-
folds and have a very small effect on the scattering functions
(see [15] for more details on tangencies between stable and
unstable manifolds). For the values of the frequency and am-

FIG. 10. Ternary asymmetric horseshoe with a's (1, 1/3). The
thick broken lines show, schematically, where the division lines
between the cells %, &, and + are in the limit of hierarchical level
to infinity.
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plitude of the driving field we chose, the nonhyperbolic ef-
fects become visible in the scattering functions at a hierar-
chical level 8 [10]. However, these nonhyperbolic effects
take over and, thus, become important for hierarchical levels
much higher than 8, in analogy to the system considered in
Ref. [15]. We note that an exact description of the infinity of
homoclinic tangencies is extremely complicated and beyond
the scope of the present paper. The mathematically inclined
reader can find some rigorous theorems on horseshoe-
development scenarios (unfoldings of homoclinic tangen-
cies) in [17,18] and references therein. In connection to the
classification of Ref. [17], in this paper we consider a param-
eter range where, at least in the vicinity of the large KAM
island, homoclinic tangencies persist; that is, we consider a
case without nearby hyperbolic windows in the parameter
space.

To derive the grammatical rules, one has to find how the
images of the various cells map on to other cells. From Fig.
9, we find the grammatical rules to be

1:A—-A,&C2:&—C,%3:C—C,%4: % — +,A
5:+ —A,&,C.

The next step is to encode the right and/or left branching
trees in Figs. 5 and 6. To do so, one needs to know not only
how a given cell maps to other cells but also the sequence in
which the mapping takes place. We illustrate this last state-
ment by explicitly showing how to encode the branching tree
for scattering from the right, see Fig. 5. We choose to follow
the unstable manifold of the outer fixed point C in Fig. 9
forward in time. As we follow the unstable manifold, we
identify the order in which a segment of each partition cell
maps to other cells. Note that in this section when we refer to
a segment of a cell, we mean a segment of the unstable
manifold that forms part of the boundary of this cell. For
example, in Fig. 9, the segment CD of the C cell maps to C
and %. These symbol values give us the encoding of the n
=1 level of the branching tree, always from right to left, in
Fig. 5. To find the symbol values of the n=2 level of the tree,
from right to left, we follow the second-order tendril of the
unstable manifold and note that the segment CD of the C cell
maps to C and % and that the segment KLM of the cell %
maps to + and A. Now, to encode the n=3 level of the part of
the tree that branches out of % at level n=1 in Fig. 5, we
follow the third-order tendril of the unstable manifold of the
fixed point C and find that the segment FN of the + cell maps
to A, &, and C cells, respectively, while the segment OP of
the A cell maps to the C, &, and A cells, respectively. The
encoding at level n of the tree that branches out of C at level
n=1 in Fig. 5, is the same with the encoding of the whole
tree at level n—1 due to self-similarity. For example, the
encoding of the n=3 level of the tree that branches out of C
at level n=1, is the same as the encoding of the whole tree at
level n=2. In the same spirit, following forward in time the
higher-order tendrils of the unstable manifold of C, we en-
code the higher hierarchical levels of the branching tree, as
shown in Fig. 5. In analogy, one encodes the left-branching
tree as shown in Fig. 6.
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V. COMPLETE DESCRIPTION OF THE SCATTERING
TRAJECTORIES AS A NATURAL RESULT OF
OUR PARTITION

Our principles and strategy to partition incomplete horse-
shoes apply to any horseshoe defined on a two-dimensional
domain. Our partition amounts to a natural way of partition-
ing the phase space if one is interested in the scattering prop-
erties of the system. That is, from our partition we can ex-
tract: (i) the number of times a scattering trajectory steps
inside the fundamental region before it either reflects or
transmits and (ii) the sequence of partition cells the trajectory
steps in, in the area R. In the following, we explicitly show
how we extract, from our partition, all the relevant informa-
tion regarding scattering trajectories.

We illustrate, in Fig. 11, how to extract the relevant scat-
tering information from our partition for the case when par-
ticles scatter in from the left. We start with a line of initial
conditions in the left asymptotic region that intersects one
complete outer tendril formed by the stable manifold of the
fixed point C. The image of this line of initial conditions in
each step of forward propagation in time stretches and con-
tinues to intersect the stable manifolds. Just before entering
the area R, this line’s image approaches the area R along the
direction of the unstable manifold of the fixed point A and is
denoted by line E in Fig. 11. We thus assume we have clev-
erly chosen the line of initial conditions to be a higher-order
preimage of the line E. The part of the branching tree en-
closed by a square in Fig. 6 describes the hierarchical struc-
ture of the intersections of the stable manifolds with the line
of initial conditions E. Since all the scattering trajectories
with initial conditions in the same interval of continuity of
the scattering function have the same behavior, in the follow-
ing, we concentrate on intervals of continuity and show how
for each interval we obtain the relevant scattering informa-
tion.

Before proceeding, let us briefly describe how we label
intervals of continuity. In our construction of the branching
trees, an interval of continuity of level n+1 is always in
between two adjacent intervals that are still unresolved at
level n+ 1. These unresolved intervals are represented by two
entries (branches) of the branching tree on level n+1 that
branch out of the same entry at level n. This entry of level n
is represented by a symbol block (sequence of symbol val-
ues) X with length n. The above-mentioned two entries of
level n+1 are labeled, using the symbol block X and the
symbol values a and b, as Xa and Xb, respectively. We label
the interval of continuity between these two unresolved
structures by X[a,b]. Next, we describe how the X[a,b]
symbol sequence contains all the relevant information for
trajectories with initial conditions in the X[a,b] interval of
continuity.

(i) The interval of continuity A [&,C], which is denoted as
1 in the branching tree in Fig. 6, corresponds to the segment
of E that cuts through the first-order gap of the stable mani-
fold of the fixed point A, denoted by the yellow segment
labeled by 1 in Fig. 11. It is important to remember that each
interval of continuity of the scattering function corresponds
to a gap of the chaotic saddle. The first image of segment 1
is the yellow arc denoted by 1; which is already mapped
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FIG. 11. (Color online) Schematic drawing of the (1, 1/3) development scenario of the driven inverted Gaussian. The black lines denote
the local segments of the stable manifolds of points A and C and the first-order tendril of the unstable manifolds of the fixed points A and
C. The red color is used to draw the second-order tendrils of the unstable manifolds of the fixed points A and C, while the green color is used
to draw the third-order tendrils of the unstable manifolds of the fixed points A and C. The first image of the part of segment E labeled as 1
(yellow), is labeled 1, (yellow) and is the arc of the first-order tendril of the unstable manifold of A. In the schematic drawing, we have
drawn the image 1, using yellow on top of the black (not shown) used to draw the first-order tendril. In the same way, we draw the images
of all the intervals we consider. That is, the arcs of the unstable manifolds that are the images of the 1, 2, 2’, 3, 3’3", and 3" segments of
E are drawn with the same color as the one used for the corresponding segment. In reality, the images of the segments of line E are not on
top of the arcs but slightly inside the corresponding gap. The reason is that the line E is ideally very close to the local segment of the unstable
manifold of A but yet slightly outside the area R. In this figure, we just indicate the different partition cells. One has to compare to Fig. 9

to have a better picture of the different cells.

outside the area R. Its second image is the arc 1,, with the
next images getting closer and closer to the local segment of
the unstable manifold of the fixed point A. Thus, the particles
with initial conditions inside the interval of continuity A [&,
C], are asymptotically thrown in from the left (fixed point A),
do not step inside R, and reflect (escape to the left).

(ii) The interval of continuity AC[%,C], which is denoted
as 2 in the branching tree in Fig. 6, corresponds to the seg-
ment of E that cuts through the second-order gap of the
stable manifold of the fixed point A, denoted by the yellow
segment labeled by 2 in Fig. 11. The first image of the seg-
ment 2 is the yellow segment 2,, which is inside the partition
cell C, the second image is the arc 2,, which is already
outside R. As for the case (i), the next images move closer to
the unstable manifold of the fixed point A. Thus, the particles
with initial conditions inside the interval of continuity AC[&
C], are asymptotically thrown in from the left (fixed point A),
step inside R once in the partition cell C and reflect to the
left.

(iii) The interval of continuity A&[C,%], which is denoted
as 2’ in the branching tree in Fig. 6, corresponds to the
segment of E that cuts through the second-order gap of the
stable manifold of the fixed point A, denoted by the yellow
segment labeled by 2’ in Fig. 11. The first image of the 2’
segment is the yellow 2| segment, which is inside the parti-
tion cell &, the second image is the arc 2, which is already
outside R. As for cases (i) and (ii), the next images move

closer and closer to the unstable manifold of the fixed point
A. Thus the particles with initial conditions inside the inter-
val of continuity A&[C,%] are asymptotically thrown in
from the left (fixed point A), step inside R once in the parti-
tion cell & and reflect to the left.

(iv) The interval of continuity ACC[%,C], which is de-
noted as 3 in the branching tree in Fig. 6, corresponds to the
segment of E that cuts through the third-order gap of the
stable manifold of the fixed point A, denoted by the purple
segment labeled 3 in Fig. 11. The first image of the segment
3 is the purple 3; segment, which is inside the partition cell
C; the second image is the purple segment 3,, which is again
inside the partition cell C. The third image of the 3 segment
is the purple arc 35 and it is already outside R. As in the
previous cases, the next images move along the direction of
the unstable manifold of A. Thus, the particles with initial
conditions inside the interval of continuity ACC[%,C] are
asymptotically thrown in from the left (fixed point A), step
inside R twice in the partition cell C and reflect to the left.

(v) The interval of continuity AC % [A, +], which is de-
noted as 3’ in the branching tree in Fig. 6, corresponds to the
segment of E that cuts through the third-order gap of the
stable manifold of the fixed point C, denoted by the purple
segment labeled 3’ in Fig. 11. The first image of the 3’
segment is the purple 3| segment which is inside the parti-
tion cell C, the second image is the purple segment 35, and it
is inside the partition cell %. The third image of the 3’ seg-
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ment is the purple arc 3}, and it is already outside R. The
next images move closer and closer to the local segment of
the unstable manifold of the fixed point C. Thus, the particles
with initial conditions inside the interval of continuity AC%
[A, +], are asymptotically thrown in from the left, step inside
R twice in the partition cells C and % and transmit to the
right.

(vi) The interval of continuity A&%[+,A], which is de-
noted as 3” in the branching tree in Fig. 6, corresponds to the
segment of E that cuts through the third-order gap of the
stable manifold of the fixed point C, denoted by the purple
segment labeled 3” in Fig. 11. The first image of the 3”
segment is the purple 3| segment which is inside the parti-
tion cell &, the second image is the purple segment 3} and it
is inside the partition cell %. The third image of the 3" seg-
ment is the purple arc 3}, and it is already outside R. As for
case d, the next images move along the direction of the local
segment of the unstable manifold of C. Thus, the particles
with initial conditions inside the interval of continuity A&%
[A,+], are asymptotically thrown in from the left (fixed
point A), step inside R twice in the partition cells & and %,
and transmit to the right.

(vii) The interval of continuity A&C [C,%], which is de-
noted as 3" in the branching tree in Fig. 6, corresponds to the
segment of E that cuts through the third-order gap of the
stable manifold of the fixed point A, denoted by the purple
segment labeled 3" in Fig. 11. The first image of the 3"
segment is the purple 3]" segment which is inside the parti-
tion cell &, the second image is the purple segment 37’ and it
is inside the partition cell C. The third image of the segment
3" is the purple arc 3%, and it is already outside R. The next
images move closer to the local segment of the unstable
manifold of A. Thus, the particles with initial conditions in-
side the interval of continuity A&C [C,%], are asymptoti-
cally thrown in from the left (fixed point A), step inside R
twice, in the partition cells & and C, and reflect to the left.

The pattern should be clear by now. The symbolic dynam-
ics of an arbitrary interval of continuity labeled by X[a,b]
gives the following information for the scattering trajectories
with initial conditions in this interval: The first symbol value
of the symbol block X indicates the side the scattering tra-
jectory comes in from. The remaining part of length n—1 of
the symbol block X indicates that the trajectory steps n—1
times inside R. The sequence of the symbol values in the
remaining part indicates the sequence of partition cells the
scattering trajectory “steps” in inside the area R. Finally,

PHYSICAL REVIEW E 73, 016219 (2006)

from the symbol values inside the brackets [a,b], one can
determine whether the particle escapes asymptotically to the
right or left. Specifically, for the development scenario of the
system currently under consideration, the grammatical rules
are such that at least one of the symbol values inside the
brackets is either the fixed point A or C. If it is the symbol
value A, for example, [A, &], then the segment of line E that
corresponds to the initial conditions inside the interval of
continuity labeled by X[A,&] approaches R from outside in-
tersecting the stable manifolds of the fixed point C, and thus,
once outside of R, the images of this interval of continuity
get closer and closer to the local segment of the unstable
manifold of C. If on the other hand, inside the brackets is the
symbol value C, for example X[C,%], then the segment of
line E that corresponds to the initial conditions inside the
interval of continuity labeled by X [C, &] approaches R from
outside intersecting the stable manifolds of the fixed point A,
and thus, once outside of R the images of this interval of
continuity get closer and closer to the local segment of the
unstable manifold of A. Let us note that for different param-
eter values of the driven inverted Gaussian (or other sys-
tems), it can be the case that neither a nor b inside the brack-
ets [a,b] is one of the outer fixed points. Clearly, in this last
case determining whether the particle scatters to the right or
left is not as simple as checking which fixed point’s symbol
value is inside the brackets. We can again determine the di-
rection the particle escapes, but additional instructions need
to be introduced in this case.

VI. CONCLUSIONS

In the current work, we explain and motivate the basic
two principles of a general scheme [6] of partitioning the
phase space that is natural for scattering systems. This
scheme is applicable to any system that can be cast into a
two-dimensional Poincaré map. We have also shown, in de-
tail, how our scheme of partitioning the phase space by using
the unstable manifolds of the outer fixed points as division
lines of the cells results in a natural partition from the scat-
tering perspective. That is, the branching tree describing the
scattering functions (which is what an asymptotic observer
measure) and the branching tree, resulting from the partition
of the phase space in the interaction region, are the same.
That means that scattering trajectories with initial conditions
in the same interval of continuity of a scattering function are
described by the same symbol sequence.
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